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1. INTRODUCTION

The H2/N20/Ar flame/reaction system has been the subject of a number of previous studies which

have included shock tube (Henrici and Bauer 1969; Dean 1976; Dean, Steiner, and Wang 1978;

Pamidimukkla and Skinner 1985; Hidaka, Takuma, and Suga 1985a, 1985b) and bulb (Baldwin, Gethin,

and Walker 1973; Baldwin, et al. 1975) experiments, as well as atmospheric pressure (Cattolica, Smooke,

and Dean 1982; Vanderhoff et al. 1977) and low pressure (Balakhnine, Vandooren, and Van Tiggelen

1977; Kohse-Hoinghaus et al. 1988) flame experiments. This system has received considerable attention

because it is one of the simplest chemical systems in which nitrogen chemistry can be investigated and,

therefore, has important implications in understanding NOx pollutant formation and nitramine propellant

combustion and decomposition. Several of the earlier flame studies focused on measuring the

concentration of major stable reactants and products. It was clear, however, that a more comprehensive

measurement of reactants and products, as well as reactive radical intermediates, was needed in order to

construct a detailed chemical mechanism for the H2/N2 0/Ar system. In a study by Balakhnine,

Vandooren, and Tiggelen (1977), all stable species profiles and several radical species profiles were

measured in a 40-torr lean (31.4% H2, 0 = 0.46) H2/N20 flame using the molecular beam sampling/mass

spectrometric detection (MB/MS) technique. This study was the first comprehensive investigation of this

system and pointed out the main features of the combustion mechanism. Experimental results which have

been presented for a 20-tort stoichiometric H2/N20/Ar flame (Howard, Sausa, and Miziolek 1991) include

a thermocouple temperature profile and relative species profiles for H2, N20, N2, H20, NO, 02, H, 0, OH,

and NH. The experimental stable species profiles have since been quantified into absolute species

concentration profiles and a detailed chemical mechanism has been constructed based on an extensive

examination of the literature concerning gas phase nitrogen chemistry (Sausa et al. 1992). The reliability

of the detailed flame model was demonstrated by the overall agreement between the experimental and

calculated species profiles for the stoichiometric H2/N20/Ar flame.

Experimental conditions where the chemistry of the H2/N20 system was significantly changed were

sought in order to provide a more rigorous test of the model. These conditions were met in the earlier

study by Balakhnine, Vandooren, and Tiggelen (1977) involving a low-pressure lean H2/N20 flame.

However, several inconsistencies concerning the production of NO and 02 (Anderson and Faust 1992)

arose when the experimental and calculated results were compared. As a result, we have undertaken a

comprehensive experimental investigation of a lean H2/N20/Ar flame to resolve these inconsistencies and

provide further validation of the detailed chemical model.
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Presented below are temperature and species profiles measured in a 20-torr fuel lean (b = 0.64)

H2/N20/Ar flame. Stable and radical species mole fraction profiles were measured using molecular beam

sampling followed by quadrupole mass spectrometric detection and compared to modeling results. A

detailed description of the chemical mechanism will appear in the literature (Sausa et al. 1992).

2. EXPERIMENTAL

The experimental apparatus utilized in this study consists of a molecular beam sampling/triple

quadrupole mass spectrometer (MB/MS) coupled to a low pressure burner chamber. This system has been

previously descr.'ed in detail in the literature (Sausa et al. 1992; Howard et al. 1992), however, a brief

description of the salient points relevant to the present study follows. The H2/N20/Ar flame was

supported on a McKenna flat-flame burner housed in a cylindrical stainless steel vacuum chamber

maintained at 20 tort. Commercial high-purity grade gases were metered with MKS mass flow controllers,

which were cross checked with a GCA Precision Scientific wet test meter. Initial volumetric flow rates

for H2, N20, and Ar were 1.25, 1.95 and 1.40 standard liters per minute, respectively, resulting in a

stoichiometry of 0.64.

The flame gases are sampled through a 200-irm-diameter orifice in a conical quartz sampler and

supersonically expanded into the first differential vacuum chamber of the triple quadrupole mass

spectrometer system. Collimating the expanding gases with a second 2-mm-diameter skimmer forms a

molecular beam. The collisionless environment of the molecular beam insures that the chemistry is

essentially frozen (i.e., chemical reactions are quenched and radical recombination is inhibited). As a

result, stable reactants and products, as well as highly reactive radical intermediates, can be probed. The

molecular beam is modulated by a tuning fork chopper and directed into the ionization region of an Extrel

C-50 triple quadrupole mass analyzer. Only a single quadrupole was utilized in the present study. The

modulated electron multiplier current intensity at each ion mass-to-charge ratio is phase sensitively

detected with a lock-in amplifier to discriminate against background gases and accommodate signal

averaging to increase sensitivity.

An ionization energy of 17.0 ±0.3 eV and an electron current of 0.20 ±0.01 mA was maintained for

all of the species profiles measured in this study, with the exception of the oxygen atom. The ionization

energy while measuring the 0 atom profile was lowered to 15.1 eV, just below the appearance potential

for forming O from N20 (Collin and Lossing 1958).
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The temperature profile for the 4> = 0.64 H2/N2 0/Ar flame was measured with a coated Pt/Pt-Rh(10%)

fine wire thermocouple. Seventy-five micron diameter platinum and platinum with 10% rhodium wires

were spot welded together to form a thermocouple junction. Coating the wires with a beryllium

oxide (15%)/yttrium oxide mixture according to the procedure described by Kent (1970) eliminated surface

catalytic effects which can result in erroneous measured temperatures. The temperature profile presented

in Figure 1 was then obtained by correcting the measured temperatures for radiation losses (Sausa et al.

1992; Peterson 1981) from the 201-pm-diameter coated thermocouple junction. The peak temperature

(2,161 K) is similar to that measured in the stoichiometric H2/N20/Ar flame (2,178 K) (Sausa et al. 1992).

The adiabatic flame temperatures for the 0 = 0.64 (2,422 K) and 4) = 1.00 (2,494 K) H2/N20/Ar flames

determined from a NASA-Lewis equilibrium calculation (Svehla and McBride 1973) are also of similar

magnitude. The solid line connecting the experimental points is a fit to a sigmoidal function with an

extrapolated burner surface temperature of 425 K. The fitted temperature profile was used as input in the

model. Another option is available in which the energy equation is solved and the temperature is

calculated in addition to the species profiles. This option was not exercised because experimentally there

are considerable hevt losses other than to the burner surface which, at present, cannot be properly

accounted for in the model resulting in unreasonable calculated temperture profiles. As a result, the option

of using the temperature profile as an input into the model was chosen (Sausa et al. 1992).

3. RESULTS

Absolute mole fractions of the stable species in the H2/N20/Ar flame were calibrated by comparing

the ion current intensities at each mass-to-charge ratio measured in the flame gases to those measured in

a known gas mixture. The relationship between the signal current intensity and the mole fraction can be

expressed in terms of a sensitivity factor which is a function of the ionization cross section and several

instrument parameters. Peeters and Mahnen (1973) have reported that the temperature dependence of the

species sensitivity factor is the same for all species. The ratio of sensitivity factors of any two species,

therefore, remains constant at every point in the flame. Using the appropriate sensitivity factors

determined under ambient conditions, it is possible to relate relative ion current intensities measured at

different points in the flame to relative mole fractions in the flame.

Sensitivity factors for H2 . N20, N2 , NO, and 02 relative to Ar were determined by calibrating gas

mixtures using nearly identical mass spectrometer operating conditions as those used during the flame

measurements. The sensitivity factor for H20 was not determined in this manner because of the difficulty

3
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of reliably introducing a precise amount of water vapor into the system. The H20 signals measured in

the flame, however, were quantified by equating the ratio of N/O in the premixed gases to the ratio of N/O

in the burnt gases (Vandooren, Branch, and Van Tiggelen 1992). The resulting expression for the partial

pressure of H20 vs. the partial pressure of Ar in the burnt gases, where the H20 signal is constant, is:

(P110) = (PN 2 ) PNo P2).

r Ar • Ar Ar

This expression was derived assuming that the mole fractions of the radical species are comparatively

small.

Since the sum of the mole fractions is unity, the mole fractions of the individual stable species can

be determined by dividing the partial pressures of the stable species relative to the partial pressure of

Argon by the sum of the partial pressures of the stable species relative to Ar plus one (the partial pressure

of Ar relative to itself is one). The mole fraction of Ar was obtained by normalizing the relative Ar ion

current intensity to the mole fraction of Ar in the premixed gases. The above outlined procedure resulted

in the absolute species profiles presented in Figures 2 and 3. The errors associated with the sensitivity

factors results in a relative estimated error of ±10% for each of the absolute species profiles.

As mentioned above, the mole fractions of the radical species, in particular, H, 0, and OH, are

assumed small in comparison to the mole fractions of the stable species. Unfortunately, it is not possible

to determine the absolute mole fractions of the radical species by direct calibration. It is possible,

however, to quantify the relative radical species profiles if the H2-0 2 reactions are assumed to be in partial

equilibrium in the burnt gases of the flame. In the present study, however, the relative H, 0, and OH

concentrations presented in Figures 4-6 were normalized to the modeling results. A partial equilibrium

analysis is planned for future work.

4. DISCUSSION

The impetus for studying a lean H2/N20/Ar flame was to provide experimental results in order to

validate the chemical mechanism for this system being developed in our laboratory (Sausa et al. 1992;

Anderson and Faust 1992). Figure 2 displays the major species profiles measured for H2, N20, N2, H20,

and Ar and the accompanying profiles calculated using our detailed flame model (Anderson and Faust

1992). Overall, the computed profiles accurately model the experimental results throughout the entire

5
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flame. Near the burner surface, in the preheat zone of the flame, the model slightly overpredicts the N20

mole fraction and underpredicts the H2 mole fraction. The discrepancy in the N20 profiles is within the

estimated uncertainty. The difference between the H2 profiles is slightly larger and at the present time,

this discrepancy is not well understood. The experimental and modeling profiles for the products, N2 and

H20, agree well in the preheat zone. However, the calculated N2 and H20 mole fractions tend to increase

more rapidly through the flame front compared to the measured mole fractions. Conversely, the predicted

N20 mole fraction decreases more rapidly through the flame front compared to the experimental results.

Table 1. Experimental and Calculated Stable Species Mole Fractions in the Post Flame Region of the
Lean (0) 0.64) H2/N20/Ar Flame Approximately 25 mm Above the Burner Surface

Species Experiment Premix Model NASA/Lewis
I I_ (Equilibrium)

H2  0.021 2.15x 10- 3  1.68xl0-3

N20 0.00 0.0275 1.99x10-8

N2  0.36 0.351 3.91x10 1-

H20 0.26 0.250 2.47x10-t1

02 0.036 0.0365 6.78xI0-2

NO 0.034 0.0402 3.07x10-3

A comparison of the experimental and predicted mole fractions of the major stable species determined

in the post flame region, 25 mm above the burner surface, is presented in Table 1. Also included for

comparison are the equilibrium mole fractions of these species determined from a NASA-Lewis chemical

equilibrium calculation (Svehla and McBride 1973) using a temperature of 2,000 K which corresponds

to a height of 25 mm above the burner. The model predicts a significant N20 mole fraction whereas,

experimentally, no appreciable N20 signal is observed. The equilibrium calculations also suggest that the

N20 mole fraction should be vanishingly small. A measurable amount of H2 in the post flame region is

observed experimentally, however, the model and the equilibrium calculations predict that H2 is almost

completely consumed in the post flame gases. The experimental and modeling results for N2 and H20

in the post flame region are in excellent agreement.
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Presented in Figure 3 are the calculated and experimental mole fraction profiles for NO and 02.

Again, the experiment and the model agree well throughout the entire flame. The overall shape of the

experimental and calculated NO mole fraction profiles agree well while the experimental 02 mole fraction

appears to increase more sharply through the flame zone than the calculated 02 mole fraction. The final

02 mole fraction is accurately predicted by the model, however, the equilibrium 02 mole fraction is

slightly higher than predicted by the model and measured experimentally. The final predicted NO mole

fraction is slightly larger than the experimental NO mole fraction. According to the results of the

equilibrium calculations, however, the NO mole fraction is considerably smaller than the model prediction

suggesting that N20 combustion does not completely proceed to the final products N2 and H20.

Formation of NO in the H2/N20 system has been discussed in the literature (Sausa et al. 1992) and has

been shown to be very important in understanding N20 oxidation and pollutant formation.

The experimental and calculated profiles for the H, 0, and OH radicals are presented in Figures 4-6,

respectively. As discussed above, the relative profiles were normalized to the modeling results because

an independent measurement of the absolute concentrations of these unstable species was not attempted

in this study. The general shapes of the calculated 0 and OH profiles agree well with the experimental

results. The predicted H atom concentration is considerably higher near the burner surface than observed

experimentally. Each of the experimental radical species profiles peaks at distances further above the

burner surface than the model predicts. This discrepancy is greatest in the H atom profiles. The

experimental 0 and OH profiles are both relatively flat near the burner surface and tend to increase rapidly

through the flame zone, which begins approximately 8 mm above the burner surface. The calculated 0

and OH profiles tend to rise more steeply closer to the burner surface than the experimental results. Given

the overall agreement of the experimental and calculated results for the stable species, it is difficult at this

time to ascertain whether these discrepancies result from perturbations to the measured profiles induced

by the quartz sampling probe or subtle inefficiencies in the model. Previous studies (Sausa et al. 1992;

Howard et al. 1992) have indicated, however, that the extent of the perturbations to the flame caused by

the quartz sampling probe are small.

The NH radical was not observed under the present experimental conditions even though the model

predicts that the NH concentration should be larger than in the previous study of the stoichiometric

H2/N20/Ar flame (Sausa et al. 1992) where NH was detected. The NH concentration in the present study

is presumably below the detection limit of the apparatus and may indicate subtle problems with the model.

12



Both the model and the experiment will be examined in the future to minimize the apparent

inconsistencies between the experiment and the model.

5. CONCLUSIONS

Presented in this paper are the experimental mole fraction profiles for H2, N20, N2, H20, NO, 02 and

the species concentration profiles for H, 0, and OH measured in a fuel lean (4D = 0.64) H2/N20/Ar flame

stabilized at 20 torr. The mole fractions of the stable species were determined by direct calibration of the

mass spectrometer signals. The relative species profiles of the unstable radical species H, 0, and OH were

normalized to the modeling results. These results provide a stringent test of the model for the H2/N 20/Ar

chemical system being developed in our laboratory (Sausa et al. 1992; Anderson and Faust 1992).

Overall, acceptable agreement has been achieved between the experimental and calculated mole fractions.
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